# **Surface Areas and Volume of Solids**

# Ex No: 25.1

#### Solution 1.

```
Let the side of the cube be 'a' cm

∴ Volume of cube = a^3

∴ 1331 = a^3 (Given)

∴ a = \sqrt[3]{1331} (Taking cube roots on both sides)

∴ a = 11 cm

Surface area of a cube = 6a^2

= 6 \times 11^2

= 6 \times 121

= 726 cm<sup>2</sup>

Hence, the surface area of the cube is 726 cm<sup>2</sup>.
```

# Solution 2.

Let the side of the cube be 'a' cm

∴ Total surface area of a cube =  $6a^2$ ∴  $864 = 6a^2$  (Given)  $a^2 = \frac{864}{6}$   $a^2 = 144$   $a = \sqrt{144}$  (Taking square roots on both sides)
∴ a = 12 cm

Volume of a cube =  $a^3$   $= 12^3$  = 1728 cm<sup>3</sup>

∴ Volume of the cube = 1728 cm<sup>3</sup>.

Solution 3. Let the length, breadth and height of the rectangular solid be 'a', 'b' and 'c' respectively. a:b:c=6:4:3(Given) Let the common multiple be x a = 6x cmb = 4x cmc = 3x cmThe total surface area of the cuboid =  $1728 \text{ cm}^2$ (Given) 2(lb + bh + hl) = 17282(ab + bc + ca) = 17282[(6x.4x) + (4x.3x) + (3x.6x)] = 1728 $24x^2 + 12x^2 + 18x^2 = \frac{1728}{2}$  $54x^2 = 864$  $x^2 = \frac{864}{54}$  $x^2 = 16$  $x = \sqrt{16}$  $x \times = 4$  $a = 6x = 6 \times 4 = 24 \text{ cm}$  $b = 4x = 4 \times 4 = 16$  cm

$$b = 4x = 4 \times 4 = 16$$
 cm  
 $c = 3x = 3 \times 4 = 12$  cm

Hence, the dimensions of the rectangular solid are 24 cm, 16 cm and 12 cm.



#### Solution 4.

Given that:

Diagonal of a cube =  $\sqrt{48}$  cm

i.e., 
$$\sqrt{3} \times I = \sqrt{48}$$
 [: Diagonal of cube =  $\sqrt{3} \times I$ ]
$$I = \frac{\sqrt{48}}{\sqrt{3}}$$

$$I = \sqrt{\frac{48}{3}}$$

$$= \sqrt{16}$$

= 4 cm

Now,

## Solution 5.

Volume of a cuboid = l x b x h2400 = 20 x 15 x h h = 8 cm Hence, height of the cuboid is 8 cm.



## Solution 6.

Given that: Diagonal of cuboid =  $3\sqrt{29}$  cm .....(1)

Ratio of Length, breadth & height = 2:3:4

We know that: Diagonal of cuboid = 
$$\sqrt{1^2 + b^2 + h^2}$$
  
=  $\sqrt{(2x)^2 + (3x)^2 + (4x)^2}$ 

$$= \sqrt{4x^2 + 9x^2 + 16x^2}$$
$$= \sqrt{29x^2}$$

$$= x\sqrt{29}$$

Also,  $x\sqrt{29} = 3\sqrt{29}$  [From (1)]

i.e., 
$$x = 3\frac{\sqrt{29}}{\sqrt{29}}$$

Thus,

Length = 
$$2 \times 3 = 6 \text{ cm}$$
  
Breadth =  $3 \times 3 = 9 \text{ cm}$   
Height =  $4 \times 3 = 12 \text{ cm}$ 

$$\therefore$$
 Volume of cuboid =  $l \times b \times h$ 

$$= 6 \times 9 \times 12$$

$$= 54 \times 12$$

$$= 648 \, \text{cm}^3$$



#### Solution 7.

# Given that:

T.S.A. of cube = 
$$294 \text{ cm}^2$$

i.e., 
$$6 \times |x| = 294$$
 [: T.S.A. of cube =  $6 \times |x|$ ]

$$I^2 = \frac{294}{6}$$

$$l^2 = 49$$

$$I = \sqrt{49}$$
$$= 7 \text{ cm}$$

$$\therefore Volume of cube = | x | x | = 7 x 7 x 7$$

$$= 343 \text{ cm}^3$$

## Solution 8.

Given that:

Let the length of cuboid = I m

We know that:-

T.S.A. of cuboid = 
$$2 \times \{(|x|b)+(|x|b)+(|x|b)\}$$
 .....(2)

On comparing (1) & (2) we get,

$$2 \times \{(l \times b) + (b \times h) + (h \times l)\} = 46$$

$$2 \times \{(l \times 3) + (3 \times 1) + (1 \times l)\} = 46$$

$$2 \times \{3l + 3 + l\} = 46$$

$$2 \times \{4l + 3\} = 46$$

$$8l + 6 = 46$$

$$8l = 46 - 6$$

$$8l = 40$$

$$l = \frac{40}{8}$$

$$I = 5 \, \text{m}$$

Now,





#### Solution 10.

Given that:

Diagonal of cuboid =  $5\sqrt{34}$  cm .....(1)

Ratio of Length, breadth & height = 3:3:4

We know that:-

Diagonal of cuboid = 
$$\sqrt{1^2 + b^2 + h^2}$$
  
=  $\sqrt{(3x)^2 + (3x)^2 + (4x)^2}$   
=  $\sqrt{9x^2 + 9x^2 + 16x^2}$   
=  $\sqrt{34x^2}$   
=  $\sqrt{34}$ 

Also,

i.e., 
$$x\sqrt{34} = 5\sqrt{34}$$
 [ From (1) ]  $x = 5\frac{\sqrt{34}}{\sqrt{34}}$ 

$$\therefore$$
  $x = 5 \text{ cm}$ 

Thus,

Length = 
$$3 \times 5 = 15 \text{ cm}$$
  
Breadth =  $3 \times 5 = 15 \text{ cm}$   
Height =  $4 \times 5 = 20 \text{ cm}$ 

∴ Volume of cuboid = 
$$1 \times b \times h$$
  
=  $15 \times 15 \times 20$   
=  $225 \times 20$   
=  $4500 \text{ cm}^3$   
=  $0.0045 \text{ m}^3$  [::  $1 \text{ m}^3 = 10^6 \text{ cm}^3$ ]



#### Solution 11.

Volume of the square plate = Volume of a cuboid



$$h = 4 \text{ mm} = \frac{4}{10} \text{ cm} = 0.4 \text{ cm}$$

Volume of the square plate =  $l \times b \times h$   $1440 = \times \times \times \times \times 0.4$   $1440 = \times^2 \times 0.4$   $\times^2 = \frac{1440}{0.4} = 3600$   $\times = \sqrt{3600}$  $\therefore \times = 60cm$ 

## Solution 12.

Given that:

Length (I) of room = 22 m Breadth (b) of room = 15 m & Height (h) of room = 6 m

∴ Area of its 4 walls = 444 m²

Cost of painting the walls = 12 per  $m^2$ i.e., for 1  $m^2$  = Rs 12

:. For 
$$444 \text{ m}^2 = \text{Rs } 12 \times 444$$
  
= Rs 5328



# Solution 13.

Given that:

Length of the cuboid = 25 cm

Breadth of the cuboid = 15 cm

Height of the cuboid = 9 cm &

Volume of cube = volume of cuboid

We know that volume of Cuboid =  $1 \times b \times h$ =  $25 \times 15 \times 9$ =  $3375 \text{ cm}^3$ 

... Volume of cube = 3375 cm<sup>3</sup>
But we know that volume of cube = I<sup>3</sup>

i.e., 
$$I^3 = 3375$$
  
 $I = \sqrt[3]{3375}$   
= 15 cm

Now,

T.S.A of cube = 
$$6l^2$$
  
=  $6 \times 15 \times 15$   
=  $1350 \text{ cm}^2$ 

#### Solution 14.





Area of a square =  $441 \text{ cm}^2$ 

$$side^2 = 441$$

side = 
$$\sqrt{441}$$

:. The length of the diagonal of the cube is 21 cm.

Let 'a' be the side of the cube

Diagonal of a cube =  $\sqrt{3} \times a$ 

$$a = \frac{21}{\sqrt{3}}$$

$$a = \frac{21}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$$

(rationalising the denominator)

$$a = \frac{21\sqrt{3}}{3}$$

∴ 
$$a = 7\sqrt{3} \text{ cm}$$

Total surface area of a cube =  $6a^2$ 

$$=6 \times (7\sqrt{3})^2$$

$$= 882 \text{ cm}^2$$

: Side of the cube is  $7\sqrt{3}$  cm and the total surface area of the cube is 882 cm<sup>2</sup>.



#### Solution 15.

Given that

Side  $(l_1)$  of metal cube (a) = 6 cm

Side  $(l_2)$  of metal cube (b) = 8 cm

Side  $(I_3)$  of metal cube (c) = 10 cm

Total Volume of all three cubes = Volume of 1 cube

Volume of cube (a) =  $(I_1)^3 = 6^3 = 216 \text{ cm}^3$ 

Volume of cube (b) =  $(l_2)^3 = 8^3 = 512 \text{ cm}^3$ 

Volume of cube (c) =  $(l_3)^3 = 10^3 = 1000 \text{ cm}^3$ 

Total volume of all three cubes = 1728 cm3

:. Volume of 1 cube= 1728 cm3

i.e.,  $I^3 = 1728$ 

I = ₹1728

∴ Side(I) = 12 cm

Length of diagonal of cube =  $\sqrt{3} \times I$ 

 $=\sqrt{3} \times 12$ 

 $= 12\sqrt{3} \text{ cm}$ 

#### Solution 16.

Given that:-

Side  $(I_1)$  of cube (a) = x cm

Side  $(l_2)$  of cube (b) = 8 cm

Side  $(l_3)$  of cube (c) = 10 cm

Edge length of new formed cube = 12 cm

Volume of cube (a) =  $(l_1)^3 = x^3$  cm<sup>3</sup>

Volume of cube (b) =  $(l_2)^3 = 8^3 = 512 \text{ cm}^3$ 

Volume of cube  $(c) = (l_3)^3 = 10^3 = 1000 \text{ cm}^3$ 

Total Volume of all three cubes = Volume of 1 cube

$$x^3 + 8^3 + 10^3 = 12^3$$

x<sup>3</sup> + 512+1000 = 1728

 $x^3 = 1728 - 1512$  $x = \sqrt[3]{216}$ 

x = 6 cm



#### Solution 17.

```
Given that:
Three cubes of equal side (I) = 5 \text{ cm}
         Volume of 1 cube = I^3
                             = 5^3
                             = 125 \, \text{cm}^3
        Volume of 3 cubes = 125 \times 3
                             = 375 \, \text{cm}^3
Since, Volume of 3 cubes = Volume of cuboid
              Volume of cuboid = 375 cm<sup>3</sup>
    ٠.
Now,
When the cubes are joined together, the breadth and height of the new cuboid
Formed remains the same whereas length changes.
Length of each cube=5cm
:. Length (I) of 3 cubes joined together=3 x 5cm=15cm
 Breadth (b) of the new cuboid=5cm
 Height (h) of the new cuboid =5cm
```

 $=2\{(15 \times 5)+(5 \times 5)+(5 \times 15)\}$ 

∴ T.S.A of cuboid = 350 cm<sup>2</sup>

 $\therefore$  T.S.A of the cuboid = 2 x {(|xb)+(bxh)+(hx|)}

 $=2 \times 175$ 

 $=2{75+25+75}$ 



# Solution 21.

We need to find: Iotal surface area of cuboid

Sum of total surface areas of 3 cubes

## Cube:

Let the side of the cube be 'a' units

:. Total surface area of 1 cube = 6a<sup>2</sup> sq. units

.. Total surface area of 3 such cubes = 3 x 6a<sup>2</sup> sq. units = 18a<sup>2</sup> sq. units

The cuboid is formed by joining 3 cubes:

length = 3a cm

breadth = a cm

height = a cm

:. Total surface area of cuboid = 2(lb + bh + hl)

= 2(3a x a + a x a + a x 3a)

 $= 2(3a^2 + a^2 + 3a^2)$ 

 $= 2(7a^2)$ 

 $= 14a^2$  sq. units

 $\frac{\text{Total surface area of cuboid}}{\text{Sum of total surface areas of 3 cubes}} = \frac{14a^2}{18a^2} = \frac{7}{9}$ 

: The ratio of Total surface area of cuboid to the Sum of total surface areas of 3 cubes is 7:9.

# Solution 22.

Volume of metal cube = Volume of water level risen in the tank

 $I^3$  = Volume of water level risen in the tank

 $\therefore$  Volume of water level risen in the tank= $4^3 = 64 \text{ cm}^3$ 

The valume of water rise is in the shape of the auboid

 $\therefore lxbxh = 64$ 

 $8 \times 4 \times h = 64$ 

 $h = \frac{64}{8 \times 4}$ 

:: h = 2 am

.. The rise in the water level is 2 cm.



#### Solution 23.

Volume of the metal = 
$$I \times b \times h$$
  
=  $6 \times 5 \times x$   
=  $30 \times cm^3$   
Volume of water risen = Volume of metal immersed  
 $I \times b \times h = 30 \times x$   
 $18 \times 8 \times 0.5 = 30 \times x$   
 $72 = 30 \times x$   
 $x = 2.4 \text{ cm}$ 

## Solution 24.

Thickness of the dosed box = 5 mm = 0.5 cm

External Dimensions are:

length = 21 cm

breadth = 13 cm

height = 11 cm

Internal dimensions = External dimensions - 2(thickness)

:: Internal Dimensions are:

length = 20 cm

breadth = 12 cm

height = 10 cm

Volume of the wood used in making the box

Volume of External cuboid - Volume of internal cuboid

 $=(21 \times 13 \times 11) - (20 \times 12 \times 10)$ 

= 3003 - 2400

= 603 cm<sup>3</sup>

Hence, the volume of wood used in making the box is 603 cm<sup>3</sup>.



# Solution 26.

Given that Length (I) of the room = 5 m Breadth (b) of the room = 2 m Height (h) of the room = 4 m

... Volume of air in the room = 
$$1 \times b \times h$$
  
=  $5 \times 2 \times 4$   
=  $40 \text{ m}^3$ 

Since, 1 person needs = 0.16 m³ of air  
e., 0.16 m³ of air = 1 person  

$$\therefore 1 m³ of air = \frac{1}{0.16} person$$
So,  $40 m³ of air = \frac{1}{0.16} x 40$   

$$= \frac{40}{0.16} x \frac{100}{100}$$

$$= \frac{4000}{16}$$
= 250 Persons

Thus, the room can accommodate 250 persons.





#### Solution 27.

Given that:

No. of persons accommodated in a room = 375 Ratio of dimensions of room = 6:4:1

i.e., Volume of air in the room = 
$$24,000 \,\mathrm{m}^3$$
 .....(1) Also,

Volume (V) of room is given by:-

$$V = I \times b \times h$$

Substituting in (1) we get,

$$\begin{array}{rcl}
1 & x & b & x & h & = 24,000 \\
6x & x & 4x & x & = 24,000 \\
24 & x^3 & = 24,000 \\
x^3 & = \frac{24000}{24} \\
x & = \sqrt[3]{1000}
\end{array}$$

$$x = 10 \, \text{m}$$

Now,

L.S.A of the room = 
$$2 \times h \times (l+b)$$
  
=  $2 \times 10 \times (60 + 40)$   
=  $20 \times 100$   
=  $2000 \text{ m}^2$ 

i.e., Area of the 4 walls of the room  $= 2000 \, \text{m}^2$ 



#### Solution 28.

Given that:

Dimensions of the class room: Length  $(l_1)$  of the room = 7 m Breadth  $(b_1)$  of the room = 6 m Height  $(h_1)$  of the room = 4 m

Dimensions of the doors:

Length  $(I_2) = 3 \text{ m}$ Breadth  $(b_2) = 1.4 \text{ m}$ No. of doors = 2

Dimensions of the windows:

Length  $(I_3) = 2 \text{ m}$ Breadth  $(b_3) = 1 \text{ m}$ No. of windows = 6

Area of doors = 
$$(I_2 \times b_2) \times 2$$
  
=  $(3 \times 1.4) \times 2$   
=  $4.2 \times 2$   
=  $8.4 \text{ m}^2$ 

Area of windows = 
$$(l_3 \times b_3) \times 6$$
  
=  $(2 \times 1) \times 6$   
=  $2 \times 6$   
=  $12 \text{ m}^2$ 

Now,

T.S.A of the room = 
$$2 \times \{(l_1 \times b_1) + (b_1 \times h_1) + (h_1 \times l_1)\}$$
  
=  $2 \times \{(7 \times 6) + (6 \times 4) + (4 \times 7)\}$   
=  $2 \times \{42 + 24 + 28\}$   
=  $2 \times 94$   
=  $188 \text{ m}^2$ 

Since the inner walls of the room has to be painted,

. Total area to be painted = T.S.A of the room 
$$-$$
 (Ar. of doors)  $-$  (Ar. of windows) =  $188 - 8.4 - 12$  =  $179.6 - 12$  =  $167.6 \, \text{m}^2$ 

Cost of colouring 1m<sup>2</sup> area = Rs 15

∴ Cost of colouring 167.6 m² area of the wall = Rs 15 x 167.6 = Rs 2514







# **Solution 30**

- ∴ The cost of papering the four walls of the room at Rs 1 per m² is Rs. 210.
- : The area of the 4 walls is 210 m<sup>2</sup>.

The length and breadth are in the ratio 5:2 (given) Let the common multiple be  $\times$ 

:. Length = 5x m breadth = 2x m

height = 5 m (given)

Surface area of the 4 walls = 2hl+2hb

$$210 = 2 \times 5 \times 5 \times + 2 \times 5 \times 2 \times$$

210 = 50x + 20x

210 = 70x

$$\therefore X = \frac{210}{70}$$

 $x \times x = 3$ 

length =  $5x = 5 \times 3 = 15$  cm

breadth =  $2x = 2 \times 3 = 6$  cm



# Solution 32.

Thickness of the closed box = 1 cm

External Dimensions are:

I = 22 cm

b = 18 cm

h = 14 cm

Internal dimensions = External dimensions -2(thickness)

Internal dimensions are:

I = 20 cm

b = 16 cm

h = 12 cm

Volume of wood used in making the box

- = Volume of External cuboid Volume of internal cuboid
- $= (22 \times 18 \times 14) (20 \times 16 \times 12)$
- = 5544 3840
- $= 1704 \text{ cm}^3$
- $\therefore$  The volume of the wood used in making the box is 1704 cm<sup>3</sup>. (Ans 1)



The cost of the wood required to make the box at the rate of Rs. 5 per cm<sup>3</sup>

- $= 5 \times 1704$
- = Rs. 8520 (Ans 2)

Side of the cube = 2 cm

: Volume of the cube = 8 cm3

Volume of box from inside = Volume of internal cuboid

- $= 20 \times 16 \times 12$
- $= 3840 \text{ cm}^3$
- :. The no. of cubes that can fit inside the box

  - $= \frac{\text{Volume of internal cuboid}}{\text{Volume of each small cube}}$

  - = 480 cubes (Ans 3)



#### Solution 33.

```
Given that:
  The length of a cold storage is double its breadth
  Height = 3 m
  Area of its four walls = 108 \,\text{m}^2 ......(1)
  Let the Breadth (b) of cold storage = x m
  Thus, the length (I) of cold storage = 2x m
    L.S.A of cold storage = 2 \times h \times (l+b)
                                                          [From (1)]
                         108 = 2 \times 3 \times (2x + x)
                               = 6 \times 3 \times
                          18x = 108
                             x = \frac{108}{18}
                             x = 6
       Length (I) = 2 \times 6 = 12 \text{ m}
       Breadth (b) = 1 \times 6 = 6 \text{ m}
Thus,
             Volume of cold storage = 1 \times b \times h
                                       = 12 \times 6 \times 3
                                       = 216 \, \text{m}^3
```

#### Solution 34.

Length (I) = 
$$48 \text{ cm}$$
  
Breadth (b) =  $36 \text{ cm}$ 

Side (S) of each square = 8 cm.

Now,

Area of metallic sheet = 
$$1 \times b$$
  
=  $48 \times 36$   
=  $1728 \text{ cm}^2$ 

Area of 1 square = 
$$S \times S$$
  
=  $8 \times 8$   
=  $64 \text{ cm}^2$ 

Thus, remaining area in the sheet after reducing the area of 4 squares:

Remaining area = 
$$1728 - 256$$
  
=  $1472 \text{ cm}^2$  .....(1)

Since 8 cm square is cut off from all sides, we get the dimensions of open box as:

Length (I) = 
$$48 - 16 = 32$$
 cm  
Breadth (b) =  $36 - 16 = 20$  cm

Area of the box = L.S.A of the box + area of base of the box 
$$1472 = \{2 \times h \times (l+b)\} + (l \times b) \qquad [From (1)]$$

$$1472 = \{2 \times h \times (32 + 20)\} + (32 \times 20)$$

$$1472 = \{2h \times 52\} + 640$$

$$1472 = 104h + 640$$

$$104h = 1472 - 640$$

$$h = \frac{832}{104}$$

Thus, volume of the box = 
$$1 \times b \times h$$
  
=  $32 \times 20 \times 8$   
=  $5120 \text{ cm}^3$ 







# Solution 35.

Thus the cost of covering the area with gravel = Rs 870.

#### Solution 36.

Volume of the fall in the level of water in the rectangular tank = Volume of cube

$$.. l \times b \times h = side^{3}$$

$$9 \times 6 \times h = 3^{3}$$

$$h = \frac{27}{9 \times 6}$$

$$.. h = 0.5 cm$$

.. The fall in the level of water in the container is 0.5 cm.



# Solution 39.

When the cube is submerged, the level of water is increased and some water flows out of it.

Volume of the cube

- = Volume of water level rise + Volume of water overflown
- = 12 x 12 x 2 + 224
- $= 512 \text{ cm}^3$

:. The volume of the cube is 512 cm3. (Ans 1)

Valume of the cube =  $s^3$ 

$$512 = s^3$$

$$s = 8 cm$$

Surface area of cube =  $6s^2$ 

$$=6 \times 8^{2}$$

$$=384 \text{ cm}^2$$

.. The surface area of the cube is 384 cm². (Ans 2)



# Ex No: 25.2 Solution 1.

(i) Given that:

Radius (r) = 4.2 cmHeight (h) = 12 cm

We know that:

Lateral surface Area (L.S.A) of cylinder =  $2 \times \pi \times r \times h$ 

Total surface Area (T.S.A) of cylinder =  $(2 \times \pi \times r \times h) + (2 \times \pi \times r^2)$ 

Volume of cylinder =  $\pi \times r^2 \times h$ 

L.S.A of cylinder = 
$$2 \times \pi \times r \times h$$
  
=  $2 \times \frac{22}{7} \times 4.2 \times 12$   
=  $316.8 \text{ cm}^2$ 

T.S.A of cylinder = 
$$(2 \times \pi \times r \times h) + (2 \times \pi \times r^2)$$
  
=  $(2 \times \frac{22}{7} \times 4.2 \times 12) + (2 \times \frac{22}{7} \times 4.2^2)$   
=  $316.8 + 110.88$   
=  $427.68 \text{ cm}^2$ 

Volume of cylinder = 
$$\pi \times r^2 \times h$$
  
=  $\frac{22}{7} \times 4.2^2 \times 12$   
=  $665.28 \text{ cm}^3$ 



(ii) Given that: Diameter=10m Radius (r) = 5 m Height (h) = 7 m

Now,

L.S.A of cylinder = 
$$2 \times \pi \times r \times h$$
  
=  $2 \times \frac{22}{7} \times 5 \times 7$   
=  $220 \text{ m}^2$ 

T.S.A of cylinder = 
$$(2 \times \pi \times r \times h) + (2 \times \pi \times r^2)$$
  
=  $(2 \times \frac{22}{7} \times 5 \times 7) + (2 \times \frac{22}{7} \times 5^2)$   
=  $220 + 157.14$   
=  $377.14 \,\text{m}^2$ 

Volume of cylinder = 
$$\pi \times r^2 \times h$$
  
=  $\frac{22}{7} \times 5^2 \times 7$   
=  $550 \text{ m}^3$ 

## Solution 2.

Diameter of cylinder = 20 cm

:. Radius (r) = 
$$\frac{20}{2}$$
 = 10 cm

Let h be the height of the cylinder Area of curved surface = 1100 cm<sup>2</sup>

i.e, L.S.A of cylinder = 
$$1100 \text{ cm}^2$$
  
 $2 \times \pi \times r \times h = 1100$   
 $2 \times \frac{22}{7} \times 10 \times h = 1100$   
 $\frac{440}{7} h = 1100$   
 $h = \frac{1100 \times 7}{440}$ 

$$h = \frac{70}{4} = 17.5 \, \text{cm}$$

[: L.S.A of cylinder =  $2 \times \pi \times r \times h$ ]

Thus, volume of cylinder = 
$$\pi \times r^2 \times h$$
  
=  $\frac{22}{7} \times 10^2 \times 17.5$   
=  $5500 \text{ cm}^3$ 

# Solution 3.

Volume of cylinder = 
$$\pi \times r^2 \times h$$
  
=  $\frac{22}{7} \times 7^2 \times 24$   
= 3696 cm<sup>3</sup>



#### Solution 4.

Let r be the radius of the cylinder.

$$5r + 2r^{2} = 42$$

$$2r^{2} + 5r - 42 = 0$$

$$2r^{2} + 12r - 7r - 42 = 0$$

$$2r(r + 6) - 7(r + 6) = 0$$

$$(2r - 7)(r + 6) = 0$$

i.e., 
$$(2r-7) = 0$$
 or  $(r+6) = 0$  or  $r = -6$   $r = \frac{7}{2}$ 

$$r = 3.5 \, \text{m}$$

Since, radius of a cylinder cannot be negative, we take the value of r = 3.5 m

:. Height (h) = 
$$5 + 3.5$$
  
=  $8.5 \text{ m}$ 

Volume = 
$$\pi \times r^2 \times h$$
  
=  $\frac{22}{7} \times 3.5^2 \times 8.5$   
=  $327.25 \,\text{m}^3$ 



#### Solution 5.

L.S.A. of cylinder = 198 cm<sup>2</sup>
Diameter of base = 21 cm
∴ Radius (r) = 10.5 cm
Let h be the height of the cylinder

L.S.A. = 198 cm<sup>2</sup>  

$$2 \times \pi \times r \times h = 198$$
 [: L.S.A of cylinder =  $2 \times \pi \times r \times h$ ]  
 $2 \times \frac{22}{7} \times 10.5 \times h = 198$   

$$\frac{462}{7} h = 198$$

$$h = \frac{198 \times 7}{462}$$

$$h = \frac{1386}{462} = 3 \text{ cm}$$

Volume of cylinder = 
$$\pi \times r^2 \times h$$
  
=  $\frac{22}{7} \times 10.5^2 \times 3$   
= 1039.5 cm<sup>3</sup>



#### Solution 6.

Volume of cylinder = 7700 cm³
Diameter of base = 35 cm
∴ Radius (r) = 17.5 cm
Let h be the height of the cylinder

Volume = 7700  

$$\pi \times r^2 \times h = 7700$$
  
 $\frac{22}{7} \times 17.5^2 \times h = 7700$   
 $962.5h = 7700$   
 $h = \frac{7700}{962.5} \times \frac{10}{10}$   
 $h = \frac{77000}{9625}$ 

h = 8 cm

Now,

T.S.A. of cylinder = 
$$(2 \times \pi \times r \times h) + (2 \times \pi \times r^2)$$
  
=  $(2 \times \frac{22}{7} \times 17.5 \times 8) + (2 \times \frac{22}{7} \times 17.5^2)$   
=  $880 + 1925$   
=  $2805 \text{ cm}^2$ 

## Solution 7.

T.S.A. of cylinder = 3872 cm<sup>2</sup>

Let r and h be the radius and height of the cylinder respectively.

Circumference of the base = 88 cm

i.e., 
$$2 \times \pi \times r = 88$$

$$2 \times \frac{22}{7} \times r = 88$$

$$r = \frac{88 \times 7}{44}$$

= 14 cm

T.S.A. of cylinder = 
$$3872 \text{ cm}^2$$
  
 $(2 \times \pi \times r \times h) + (2 \times \pi \times r^2) = 3872$   
 $(2 \times \frac{22}{7} \times 14 \times h) + (2 \times \frac{22}{7} \times 14^2) = 3872$ 

$$h = \frac{2640}{88}$$

$$h = 30 \text{ cm}$$

Thus, Volume of cylinder =  $\pi \times r^2 \times h$ 

$$=\frac{22}{7}\times14^2\times30$$

$$= 18480 \, \text{cm}^3$$

## Solution 9.

Let the radius of base of the original cylinder = r And the height of the cylinder = h

Volume of original cylinder =  $\pi r^2 h$ 

Given that, the radius of new cylinder = 2r

And, 
$$\frac{height}{2} = \frac{h}{2}$$

∴ Volume of new cylinder = 
$$\pi \times (2r)^2 \times \frac{h}{2}$$
  
=  $2\pi r^2 h$ 

Ratio of volume of new cylinder to that of original cylinder =  $\frac{2\pi r^2 h}{\pi r^2 h}$ 



#### Solution 10.

Let the radius of base of the original cylinder = rAnd the height of the cylinder = h

Volume of original cylinder =  $\pi$  r<sup>2</sup> h

Given that, the radius of new cylinder = 3r And, height = 2r

... Volume of new cylinder = 
$$\pi \times (3r)^2 \times 2h$$
  
=  $18\pi r^2 h$ 

Ratio of volume of new cylinder to that of original cylinder =  $\frac{18\pi r^2 h}{2}$ 

$$= 18:1$$

# Solution 11.

Height(h) = 8 cm

Let r be the radius of the cylinder.

Volume of cylinder =  $392\pi$  cm<sup>3</sup>

i.e., 
$$\pi r^2 h = 392 \pi$$
  
 $r^2 \times 8 = 392$   
 $r^2 \times 8 = 392$   
 $r^2 = 49$   
 $r = \sqrt{49}$   
 $r = 7 \text{ cm}$ 

Now,

L.S.A of cylinder = 
$$2 \times \pi \times r \times h$$
  
=  $2 \times \frac{22}{7} \times 7 \times 8$   
=  $352 \text{ cm}^2$ 

T.S.A of cylinder = 
$$(2 \times \pi \times r \times h) + (2 \times \pi \times r^2)$$
  
=  $(2 \times \frac{22}{7} \times 7 \times 8) + (2 \times \frac{22}{7} \times 7^2)$   
=  $352 + 308$   
=  $660 \text{ cm}^2$ 



#### Solution 12.

Diameter of the wire = 0.8 cm

Radius of the wire = 0.4 cm

If  $4.2 \text{ g of copper} = 1 \text{ cm}^3 \text{ of copper}$ 

Then 22 kg copper =  $\frac{22000}{4.2}$  cm<sup>3</sup>

Volume of the copper wire = Area of basex length of wire

$$\frac{22000}{4.2} = \pi r^2 \times h$$

$$\frac{22000}{4.2} = \frac{22}{7} \times 0.4^2 \times h$$

$$h = \frac{22000 \times 7}{4.2 \times 22 \times 0.4 \times 0.4}$$

$$h = 10416.7 \text{ cm}$$

$$\therefore h = 104.17 \text{ m}$$

:. The length of the copper wire is 104.17 m.



#### Solution 13.

For the solid cylinder:

diameter = 4 cm

radius = 2 cm

Let its length be I.

Volume of solid cylinder =  $\pi r^2 l$ 

$$= \pi 2^2 1$$

 $=4\pi l \text{ cm}^3$ 

For the hollow cylinder:

Outer diameter = 10 cm

Outer radius(R) = 5 cm

Inner radius(r) = R-thickness

$$r = 5-0.25$$

r = 4.75 cm

Volume of the hollow cylinder =  $\pi R^2 h - \pi r^2 h$ 

$$= \pi h (5^2 - 4.75^2)$$

 $= \pi \times 21(25 - 22.5625)$ 

 $= 51.1875\pi \text{ cm}^3$ 

Since the solid cylinder is recast into a hollow cylinder, Volume of solid cylinder

= Volume of material in the hollow cylinder

$$4\pi I = 51.1875\pi$$

$$I = \frac{51.1875\pi}{4\pi}$$

:. The length of the solid cylinder is 12.80 cm.



#### Solution 15.

Outer diameter of roller = 30 cm

Outer radius = 
$$\frac{30}{2}$$

 $= 15 \, \text{am}$ 

Thickness of iron = 2 cm

Length of roller = 1 m

 $= 100 \, \text{am}$ 

Inner radius = Outer radius - Thickness

 $= 13 \, \text{cm}$ 

Valume of iron

= 
$$\pi \{ (r_{outer})^2 - (r_{inner})^2 \} \times h$$

$$= \{ (15)^2 - (13)^2 \} \times 100$$

 $= 17600 \, \text{cm}^3$ 

:. The volume of the iron is 17600 cm3. (Ans 1)

The roller travels 8 rounds in 1 second,

:. Total rounds made in 6 seconds = 6 x 8

= 48

In one round, distance travelled by roller

- = Circumference of the curved surface
- : Distance travelled in 6 seconds
- = Araumference x 48
- $=2\pi r_{outer} \times 48$
- $= 4.52 \, \text{m}$
- : Distance travelled in 6 seconds is 4.52 m. (Ans 2)

Area covered in 6 seconds = Distance travelled x Width

Area covered = 
$$4.52 \times 1$$

$$= 4.52 \, \text{m}^2$$

:. The area covered by the roller in 6 seconds is 4.52 m<sup>2</sup>.

(Ans 3)



#### Solution 16.

Dimensions of rectangle = 36 cm x 20 cm

Let the rectangle be rolled along its length to form a cylinder, thus the length and breadth of the rectangle will be equal to circumference and height (h) of the cylinder respectively.

Let r be the radius of the cylinder.

Circumference of cylinder = 36 cm

$$2 \times \pi \times r = 36$$

$$r = \frac{36}{2\pi}$$

$$r = \frac{18}{\pi}$$
 cm

thus,

Volume of the cylinder so formed =  $\pi \times r^2 \times h$ 

$$= \pi \times \left(\frac{18}{\pi}\right)^2 \times 20$$

$$= \frac{6480}{\pi} \text{ cm}^3 \dots (1)$$



Now,

Let the rectangle be rolled along its breadth to form a cylinder, thus the length and breadth of the rectangle will be equal to height (H) and circumference of the cylinder respectively.

Let R be the radius of the cylinder.

Circumference of cylinder = 20 cm

$$2 \times \pi \times R = 20$$

$$R = \frac{20}{2\pi}$$

$$R = \frac{10}{\pi} \text{ cm}$$

thus,

Volume of the cylinder so formed =  $\pi \times R^2 \times H$ 

$$= \pi \times \left(\frac{10}{\pi}\right)^2 \times 36$$

$$= \frac{3600}{\pi} \text{ cm}^3 \qquad (2)$$

 $\therefore$  Ratio of volumes of two cylinders =  $\frac{(1)}{(2)}$ 

$$=\frac{6480}{3600}$$



#### Solution 17.

Dimensions of iron sheet =  $2.2 \text{ m} \times 1.5 \text{ m}$ 

Let the iron sheet be rolled along its length to form a cylinder, thus the length and breadth of the sheet will be equal to circumference and height (h) of the cylinder respectively.

Let r be the radius of the cylinder Circumference of cylinder = 2.2 m

$$2 \times \pi \times r = 2.2$$

$$r = \frac{2.2}{2\pi}$$

$$r = \frac{1.1}{\pi} m$$

Thus,

Volume of the cylinder so formed =  $\pi \times r^2 \times h$ 

$$= \pi \times \left(\frac{1.1}{\pi}\right)^{2} \times 1.5$$

$$= \frac{1.815}{\pi} \text{ m}^{3} \dots (1)$$



Now,

Let the iron sheet be rolled along its breadth to form a cylinder, thus the length and breadth of the sheet will be equal to height (H) and circumference of the cylinder respectively.

Let R be the radius of the cylinder.

Circumference of cylinder = 1.5 m

$$2 \times \pi \times R = 1.5$$

$$R = \frac{1.5}{2\pi}$$

$$R = \frac{0.75}{\pi} \text{ m}$$

thus,

Volume of the cylinder so formed =  $\pi \times R^2 \times H$ 

$$= \pi \times \left(\frac{0.75}{\pi}\right)^{2} \times 2.2$$

$$= \frac{1.2375}{\pi} \text{ m}^{3} \qquad (2)$$

 $\therefore$  Ratio of volumes of two cylinders =  $\frac{(1)}{(2)}$ 

$$= \frac{1.815}{1.2375} \times \frac{10,000}{10,000}$$
$$= \frac{18150}{12375}$$
$$= 22 \cdot 15$$



#### Solution 18.

Dimensions of rectangular strip = 36 cm x 22 cm

The rectangular strip is rotated about its length to form a cylinder, thus the length and breadth of the sheet will be equal to circumference and height (h) of the cylinder respectively.

Let r be the radius of the cylinder. Circumference of cylinder = 36 cm

$$2 \times \pi \times r = 36 \text{ cm}$$
 .....(1)

$$r = \frac{36}{2\pi}$$

$$r = \frac{18}{\pi}$$
 cm

thus,

Volume of the cylinder so formed =  $\pi \times r^2 \times h$ 

$$= \pi \times \left(\frac{18}{\pi}\right)^2 \times 22$$
  
= 18<sup>2</sup> x 7  
= 2268 cm<sup>3</sup>

Now,

T.S.A of cylinder = 
$$(2 \times \pi \times r \times h) + (2 \times \pi \times r \times r)$$
  
=  $(36 \times 22) + (36 \times \frac{18}{\pi})$  [from (1)]  
=  $792 + 206.18$   
=  $998.18 \text{ cm}^2$ 



#### Solution 20.

Depth or height (h) of cylindrical well = 42 m Diameter = 14 m

Volume of the well = 
$$\pi \times r^2 \times h$$
  
=  $\frac{22}{7} \times 7^2 \times 42$   
=  $6468 \text{ m}^3$ 

Curved surface area of walls = 
$$2 \times \pi \times r \times h$$
  
=  $2 \times \frac{22}{7} \times 7 \times 42$   
=  $1848 \text{ m}^2$ 

Cost of plastering 1 m<sup>2</sup> area of the wall = Rs 15 Cost of plastering 1848 m<sup>2</sup> area of the wall = Rs 15 x 1848 = Rs 27,720

# Solution 21.

The shape of the well will be cylindrical.

Depth  $(h_1)$  of well = 21 m

Diameter of well = 14 m

:. Radius (r<sub>1</sub>) of well = 7 m

Width of embankment = 14 m

Radius of well with embankment  $(r_2)=7m+14m=21m$ 

Let height of the embankment be h2

$$\text{∴ Volume of earth spread on the embankment} = \pi h_2 \left( r_2^2 - r_1^2 \right) = \pi h_2 \left( r_2 + r_1 \right) \left( r_2 - r_1 \right)$$
 
$$= \frac{22}{7} \times h_2 \times 28 \times 14 = 1232 h_2$$

Volume of soil dug from well = Volume of earth used to form embankment i.e.,  $\pi \times r_1^2 \times h_1 = \pi h_2 (r_2^2 - r_1^2)$ 

$$\frac{22}{7} \times 7^2 \times 21 = 1232h_2$$

$$h_2 = \frac{3234}{1232} = 2.625$$

$$= 2.625 \,\mathrm{m}$$

∴ Height of the embankment = 2.625 m







# Solution 23.

Radius of the well  $(r) = \frac{6}{2} = 3 \text{ m}$ 

Volume of earth dug out of the well

- = πr<sup>2</sup>h (Volume of cylinder )
- $= \pi \times (3)^2 \times h$
- $= 9\pi h m^2$

Area of embankment =  $\pi R^2 - \pi r^2$ 

Where R = r +width of the embankment

$$R = 5 \text{ m}$$

Area of embankment =  $\pi 5^2 - \pi 3^2$ 

$$= 16\pi \text{ m}^2$$

Volume of earth dug out for the embankment

= area of embankment × height

$$9\pi h = 16\pi \times 2.25$$

$$h = \frac{16\pi \times 2.25}{9\pi}$$

:. The depth of the well is 4 m.

# Solution 25.

Inner diameter of base = 20 cm

Area of the wet surface of the cylinder

- = Inner curved surface area of cylinder + area of base
- $= 2\pi rh + \pi r^2$
- $= 2\pi \times 10 \times 14 + \pi (10)^2$
- $= 280\pi + 100\pi$
- $= 380\pi$
- $= 1194 \text{ cm}^2$

:. Area of the wet surface of the cylinder is 1194 cm².



#### Solution 26.

Initial values:

$$Volume(V_1) = \pi r^2 h$$

Curved surface area( $C_1$ ) =  $2\pi rh$ 

New values after change:

$$radius = r - 10\%$$
 of r

$$= 0.9r$$

height = h + 20% of h

$$= h + 0.2h$$

$$= 1.2h$$

Volume 
$$(V_2) = \pi (0.9r)^2 \times 1.2h$$

$$= 0.972\pi r^2 h$$

Curved surface area( $C_2$ ) =  $2\pi(0.9r)(1.2h)$ 

$$= 2\pi rh (1.08)$$

Change in percentage of Volume = 
$$\frac{(V_1 - V_2)}{V_1} \times 100$$
  
=  $\frac{(\pi r^2 h - 0.972 \pi r^2 h)}{\pi r^2 h} \times 100$   
=  $\frac{\pi r^2 h (1 - 0.972)}{\pi r^2 h} \times 100$   
=  $0.028 \times 100$   
=  $2.8\%$ 

The positive value indicates that  $V_1$  is greater than  $V_2(V_1-V_2)$ , which indicates that there is a decrease in volume by 2.8%. (Ans 1)

Change in the percentage of the

Curved surface area = 
$$\frac{(C_1-C_2)}{C_1} \times 100$$
 = 
$$\frac{(2\pi rh - 2\pi rh \times 1.08)}{2\pi rh} \times 100$$
 = 
$$\frac{2\pi rh(1-1.08)}{2\pi rh} \times 100$$

$$2\pi \text{rh}$$
  
= -0.08×100 = 8%

(negative sign indicates that  ${\rm C_1}$  is smaller than  ${\rm C_2}$ )

⇒ There is an 8% increase in the curved surface area.





#### Solution 27.

Inner radius of tap = 0.8 cm

Circular area = 
$$\pi R^2$$

$$= \pi (0.8)^2$$

$$= 0.64\pi^{\circ} \text{ cm}^{2}$$

Rate of water flow = 7 m/s = 700 cm/s

Volume of water flowing out of the tap in one second

- = rate of flowing of water x dircular area of tap
- $= 700 \times 0.64\pi$
- $= 700 \times 0.64 \times 3.142$
- $= 1408 \text{ cm}^3$

So volume of water flowing out in 75 minutes i.e  $75 \times 60$  s

- $= 1408 \times 75 \times 60 \text{ cm}^3$
- $= 6336000 \text{ cm}^3$
- $=\frac{6336000}{1000}$ litres
- = 6336 litres

: Volume of water delivered by the pipe is 6336 litres.



#### Solution 28.

```
For the cylindrical tank:
```

diameter = 4m

radius = 2m

 $= 200 \, \text{am}$ 

Height = 6m

=600 cm

Volume of the cylindrical tank =  $\pi r^2 h$ 

 $= \pi(200)^2 \times 600$ 

 $= 24000000\pi \text{ cm}^3$ 

For the cylindrical pipe:

diameter = 4 cm

radius = 2 cm

rate of flow of water = 10 m/s = 1000 cm/s

Volume of water flown in 1 sec = area of base x rate of flow of water

$$= \pi \times 2^2 \times 1000$$

 $=4000\pi \text{ cm}^3$ 

:. Time taken to fill the tank = 
$$\frac{24000000\pi}{4000\pi}$$

$$=\frac{24000}{4}$$

= 6000 s

$$=\frac{6000}{60}$$
 mins

= 100 minutes

:. The time taken to fill the tank is 100 mins.



## Solution 29.

Curved surface area of cylinder =  $\pi$  r<sup>2</sup>h Height h = 14 cm

The difference between the outer and inner curved surface area = 264 cm<sup>2</sup>

$$2\pi \times \{(R_{outer})-(R_{in})\} \times h = 264 \text{ cm}^2$$

$$\Rightarrow \pi \times \{(R_{outer})-(R_{in})\} \times h = 132 \qquad (1)$$

Volume of material in cylinder =  $1980 \text{ cm}^3$ 

$$\pi\{(R_{outer})^2 - (R_{in})^2\} \times h = 1980$$

$$\pi\{(R_{outer})-(R_{in})\}\{(R_{outer}+(R_{in}))\} \times h = 1980$$
 (2)

Substituting (1) in (2), we get

$$\{(R_{outer} + (R_{in})) \times 132 = 1980$$
  
  $\therefore \{(R_{outer} + R_{in}) = 15 \text{ cm}$ 

Total surface area of a hollow cylinder

= 
$$2\pi\{(R_{outer} + R_{in}) \times h + 2\pi\{(R_{outer})^2 - (R_{in})^2\}$$

$$= 2\pi \times 15 \times 14 + 2 \times \frac{1980}{14}$$

$$= 1602 \text{ cm}^2$$

.. The total surface area of the hollow cylinder is 1602 cm²...



# Solution 30.

```
Let height = h
     radius = r
        h+r=28 cm (given)
          h = 28 - r cm
Total surface area of cylinder = 2\pi rh + 2\pi r^2
                  2\pi r(28-r) + 2\pi r^2 = 616
                  56\pi r - 2\pi r^2 + 2\pi r^2 = 616
                                56\pi r = 616
                                     r = \frac{616}{56\pi}
                                     r = 3.5 cm
                                     h = 28-r
                                        = 28 - 3.5
                                        = 24.5 cm
Volume of cylinder = \pi r^2 h
                         = \pi(3.5)^2 \times 24.5
                         = 943 cm<sup>3</sup>
.. Volume of cylinder is 943 cm<sup>3</sup>.
```



#### Solution 31.

Internal diameter of tube = 10.4 cm

Internal radius = 5.2 cm

Length of tube = 25 cm

Thickness of metal = 8 mm

= 0.8 cm

Outer radius = Internal radius + Thickness

= 5.2 + 0.8

= 6 cm

Volume of metal = Volume of material between outer radius and inner radius

$$= \pi (R^2 - r^2)h$$

$$= \pi \{6^2 - (5.2)^2\} \times 25$$

= 704 cm<sup>3</sup>

:. The volume of the metal used is 704 cm³. (Ans 1)

 $1 \text{ cm}^3 \text{ of metal} = 1.42g$ 

: 704 cm3 of metal = 704 x 1.42

= 999.68 g

:. The weight of the tube is 999.68 g. (Ans 2)



# Ex No: 25.3 Solution 1.



(a) Divide the figure into 1 rectangle and 1 triangle.

Dimensions of the rectangle:

length = 8 cm

breadth = 6 cm

Area of rectangle =  $length \times breadth$ 

$$= 48 \text{ cm}^2$$
 (1)

Dimensions of the triangle:

$$base = 12-6$$

$$= 6 \text{ cm}$$



Area of a triangle = 
$$\frac{1}{2} \times b \times h$$
  
=  $\frac{1}{2} \times 6 \times 3$   
=  $9 \text{ cm}^2$  (2)

Area of the cross section = 48+9

$$= 57 \text{ cm}^2$$

:. Area of the cross section is 57 cm<sup>2</sup> .

(b)

Volume of the metal = Area of cross-section  $\times$  height =  $57 \times 200$ 

$$= 11400 \text{ cm}^3$$

: Volume of the metal is 11400 cm<sup>3</sup>.

# Solution 2.

The given figure is a trapezium because 2 opposite sides are parallel.

length of the pool = 40 m

height of the trapezium = 10 m

Area of cross section = Area of trapezium

= 
$$\frac{1}{2}$$
 x (sum of parallel sides) x height

$$=\frac{1}{2}\times(2+3)\times10$$

$$= 25 \text{ m}^2$$

Volume of the pool = Area of cross section x length

$$= 1000 \text{ m}^3$$

.. The volume of the pool is 1000 m<sup>3</sup>.



# Solution 3.



(a) To find the volume, first find the area of the figure. To find the area, we divide the figure into 3 different rectangles.

Rectangle 1 (left):

$$width = 40 cm$$

Area = 
$$length \times width$$

$$= 2000 \text{ cm}^2$$

Rectangle 2 (middle):

$$length = (60 + 30) cm = 90 cm$$

width = 
$$40 \text{ cm}$$

Area = 
$$length \times width$$

$$= 90 \times 40$$

$$= 3600 \text{ cm}^2$$

Rectangle 3 (right):

$$width = 40 cm$$

Area = 
$$length \times width$$

$$= 60 \times 40$$

$$= 2400 \text{ cm}^2$$



Total area = 2000+3600+2400=  $8000 \text{ cm}^2$ 

Volume = Total areax length

 $= 8000 \times 60$ 

 $= 4,80,000 \text{ cm}^3$ 

:. The space occupied is 4,80,000 cm<sup>3</sup>.



(b) Total surface area = 2 x Area of cross section+ Area of bottom face+Area of left face+ Area of right face+Area of top face

Area of cross-section =  $8000 \text{ cm}^2$  (from a) Width of the stand = 60 cm (given)

Area of bottom face =  $130 \times 60$ 

 $= 7800 \text{ cm}^2$ 

Area of the left face =  $40 \times 60 + 50 \times 60 + 50 \times 60$ 

 $= 8400 \text{ cm}^2$ 

Area of right face =  $60 \times 60 + 40 \times 60 + 30 \times 60$ 

 $= 7800 \text{ cm}^2$ 

Area of the top face =  $40 \times 60$ 

 $= 2400 \text{ cm}^2$ 





Total area = 2000+3600+2400=  $8000 \text{ cm}^2$ 

Volume = Total areax length

 $= 8000 \times 60$ 

 $= 4,80,000 \text{ cm}^3$ 

:. The space occupied is 4,80,000 cm3.



(b) Total surface area = 2 x Area of cross section+ Area of bottom face+Area of left face+ Area of right face+Area of top face

Area of cross-section = 8000 cm<sup>2</sup> (from a) Width of the stand = 60 cm (given)

Area of bottom face =  $130 \times 60$ 

 $= 7800 \text{ cm}^2$ 

Area of the left face =  $40 \times 60 + 50 \times 60 + 50 \times 60$ 

= 8400 cm<sup>2</sup>

Area of right face =  $60 \times 60 + 40 \times 60 + 30 \times 60$ 

 $= 7800 \text{ cm}^2$ 

Area of the top face =  $40 \times 60$ 

= 2400 cm<sup>2</sup>



Total surface area =  $2 \times 8000 + 7800 + 8400 + 7800 + 2400$ =  $42400 \text{ cm}^2$ =  $4.24 \text{ m}^2$ 

.. The total surface area is 4.24 m<sup>2</sup>.

# Solution 4.

Rate of flow of water = 1.5 m/s= 150 cm/s

Rate of volume of water flown = Rate of flowx cross section area

=  $150 \times 2.5$ =  $375 \text{ cm}^3/\text{s}$ 

Total volume of water flow = Rate of volume of water flown x Time

= 375x(4x60 secands)

 $= 900000 \text{ cm}^3$ 

Volume of water flown = Volume of water in the tank

90000=1xbxh

 $90000 = 90 \times 50 \times h$ 

h=20 cm

:. The rise in the level of water is 20 cm.



# Solution 5.



Area of cross section = Area of trapezium

= 
$$\frac{1}{2}$$
 x (sum of parallel sides) x height

$$= \frac{1}{2} \times (1.5 + 4.5) \times 50$$

$$= \frac{1}{2} \times 6 \times 50$$

$$= 150 \text{ m}^2$$

:. Volume of the pool = area of cross section x height

$$= 150 \times 15$$

$$= 2250 \text{ m}^3$$

$$(: 1 \text{ m}^3 = 1 \text{ kilolitre})$$

: Volume of the pool is 2250 kilolitres.



# Solution 6.

Dimensions of the tank:

Amount of rainfall = 
$$\frac{\text{Volume of tank}}{\text{Area of roof}}$$
  
=  $\frac{90 \times 0.7 \times 0.84}{28 \times 9}$   
= 0.21 m  
= 21 cm

: Amount of rainfall is 21 cm.

# Solution 7.

$$1 \text{ km/hr} = \frac{1 \text{ km}}{1 \text{ hr}}$$
$$= \frac{100000 \text{ cm}}{3600 \text{ s}}$$
$$= \frac{250}{9} \text{ cm / s}$$

Rate of flow of water = Area of cross section x rate =  $5.4 \times 27 \text{ km/hr}$ =  $5.4 \times 27 \times 250/9 \text{ cm/s}$ =  $4050 \text{ cm}^3/\text{s}$ 

Volume of water flown out in 2 minutes

- = Rate of flow of water x Time
- =  $4050 \times (2 \times 60 \text{ seconds})$
- $= 486000 \text{ cm}^3$
- $=\frac{486000}{1000}$
- = 486 litres ( :: 1 litre = 1000 cm<sup>3</sup>)
- : Volume of water which flows out of the pipe in 2 minutes is 486 liters.



# Solution 8.



(a) Complete the diagram as shown:

Let 
$$AD = x m$$

$$AB = AD + DB$$

$$= (x+4) \text{ m}$$

$$BC = \frac{1}{2} \times QC$$

$$=\frac{1}{2}\times2$$

$$= 1 \text{ m}$$

$$DE = \frac{1}{2} \times PE$$

$$=\frac{1}{2} \times 0.2$$

$$= 0.1 \text{ m}$$

In ΔADE and ΔABC,

$$\angle ADE = \angle ABC$$
 (90°each)

$$\angle DAE = \angle BAC$$
 (Common angle)



$$\therefore \frac{AD}{AB} = \frac{DE}{BC} \quad (C.S.S.T.)$$

$$\frac{\times}{\times + 4} = \frac{0.1}{1}$$

$$\frac{10\times}{\times + 4} = \frac{10\times0.1}{1} \quad \text{Multiply by 10 on both sides}$$

$$10x = x+4$$

$$9x = 4$$

$$x = \frac{4}{9} \text{ m}$$

$$\therefore AB = \frac{4}{9} + 4$$

$$= \frac{40}{9} \text{ m}$$

Area of the cross section of the wall

= 
$$A(\triangle AQC) - A(\triangle APE)$$
  
=  $\frac{1}{2} \times QC \times AB - \frac{1}{2} \times PE \times AD$   
=  $\frac{1}{2} \times 2 \times \frac{40}{9} - \frac{1}{2} \times 0.2 \times \frac{4}{9}$   
=  $\frac{40}{9} - \frac{0.4}{9}$   
=  $\frac{39.6}{9}$   
= 4.4

- ${\rm ::}\,$  The area of the cross section of the wall is 4.4 sq. m
- (b) Area of the cross section of the wall = 4.4 sq. m .... from (a)

Volume of the wall = Area of the cross section×length =  $4.4 \times 40$ = 176 m<sup>3</sup>

- $\therefore$  Volume of the wall is 176 m<sup>3</sup>.
- (c) Cost for painting will depend on the total surface area which includes 5 faces (2 cross sectional, 2 lateral



rectangles and 1 top face)

Area of 1 cross section = 
$$4.4 \text{ m}^2$$
....from (a)  
Area of 2 cross sections =  $2 \times 4.4$   
=  $8.8 \text{ m}^2$ 

To find the area of the rectangles, we need to first find length of side PQ.

$$PQ = AQ - AP$$

By applying Pythagoras theorems in ΔABQ and ΔAPD



In 
$$\triangle ABQ$$
,  
 $AQ^2 = AB^2 + QB^2$   
 $= (\frac{40}{9})^2 + 1^2$   
 $= \frac{1600}{81} + 1$   
 $= \sqrt{\frac{1681}{81}}$   
 $= \frac{41}{9}$   
 $AQ = 4.56 \text{ m}$ 

In 
$$\triangle APD$$
,  
 $AP^2 = AD^2 + PD^2$   
 $= (\frac{4}{9})^2 + 0.1^2$   
 $= \frac{16}{81} + 0.01$   
 $= \sqrt{\frac{16.81}{81}}$   
 $= \frac{4.1}{9}$ 

$$AP = 0.46 \text{ m}$$

$$PQ = AQ - AP$$
  
= 4.56 - 0.46  
= 4.1 m

Total surface area of 5 faces

= 2 x Area of cross section+

Area of 2 lateral faces+Area of top face

$$= 2 \times 4.4 + 2 \times PQ \times length + 0.2 \times 40$$

$$= 344.8 \text{ m}^2$$

Cost of painting = 
$$344.8 \times 2.50$$
  
= Rs. 862

: The cost of painting the wall is Rs. 862.



#### Solution 9.

(a) The internal surface area will consist of faces formed by 1 side as length and other sides as AD, CD and BC.

$$AM = \frac{1}{2}(AB - CD)$$
$$= \frac{1}{2}(4.4 - 3)$$

AM = 0.7

In AAMD, by Pythagoras theorem,

$$AD^2 = AM^2 + DM^2$$

$$AD^2 = (0.7)^2 + (2.4)^2$$

$$AD = 2.5m$$

$$AD = BC = 2.5 \text{ m}$$

Total surface area =  $(length \times AD)+(length \times CD)+(length \times BC)$ 

$$= 5.4(AD+CD+BC)$$

$$= 43.2 \text{ m}^2$$

Cost of painting =  $43.2 \times 5$ 

$$= Rs 216$$

:. The cost of painting the internal surface is Rs. 216.

(b) Flooring will be done on an area formed by AB and length.

Area of floor = AB x length

$$= 4.4 \times 5.4$$

$$= 23.76 \text{ m}^2$$

 $\therefore$  The cost of flooring = 2.5  $\times$  23.76

$$= Rs 59.4$$



#### Solution 10.

(a) Volume of shed = Area of wall x length

Area of the wall

= Area of 
$$\triangle$$
CDE + Area of rectangle ABCE  
=  $\frac{1}{2} \times$ base  $\times$  height + AB  $\times$  AE  
=  $\frac{1}{2} \times 8 \times 3 + 8 \times 7.5$   
= 72 m<sup>2</sup>

:. The volume of the shed = 
$$72 \times 50$$
  
=  $3600 \text{ m}^3 \text{ (Ans 1)}$ 

(b) Asbestos sheets are spread on the area formed by the rectangle with CD and DE as lengths.

In ΔCDE, by Pythagoras theorem,

$$DE^2 = (perpendicular)^2 + (\frac{AB}{2})^2$$

$$DE^2 = 3^2 + (\frac{8}{2})^2$$

$$DE^2 = 3^2 + 4^2$$

$$DE^2 = 25$$

Area of asbestos sheets = DExlength + DCxlength

Area of asbestos sheet = 
$$2 \times 5 \times 50$$
  
=  $500 \text{ m}^2$ 

Cost of roofing = Area 
$$\times$$
 rate  
=  $500 \times 20$ 



(c)

Total area =  $2 \times Area$  of asbestos +

 $2 \times Area of wall + 2 \times AE \times length$ 

 $= 500+2 \times 72 + 2 \times 7.5 \times 50$  (from a and b)

= 500+144+750

 $= 1394 \text{ m}^2$ 

:. The total surface area of the shed is 1394 m<sup>2</sup>.

## Solution 11.

Area of cross-section = Area of trapezium

=  $\frac{1}{2}$  x(sum of parallel sides) x height

$$= \frac{1}{2} \times (1+3) \times 1.5$$

 $= 3 \text{ m}^2$ 

Volume of the  $p\infty l = Area$  of cross-section x length

 $=3 \times 50$ 

 $= 150 \text{ m}^3$ 

 $\therefore$  The volume of the pool is 150 m<sup>3</sup>.



#### Solution 12.

Water delivered in 10 mins = 1800 liters=  $1800 \times 1000 \text{ cm}^3$ 

1800000 = Speed x 3 x 10

: Speed = 60000 cm/min

$$1 \frac{\text{cm}}{\text{min}} = \frac{1 \div 100000 \text{ km}}{1 \div 60 \text{ hr}}$$
$$= \frac{60}{100000}$$
$$= \frac{6}{10000} \text{km/hr}$$

:. Speed = 
$$60000 \times \frac{6}{10000} \text{km/hr}$$
  
= 36 km/hr

:. The speed of the water through the pipe is 36 km/hr.

## Solution 13.

Area of trapezoid =  $\frac{1}{2}$  × (Sum of parallel sides) × height =  $\frac{1}{2}$  × (3+5) × 2

 $= 8 \text{ m}^2$ 

Volume of the canal = Area of trapezoid  $\times$  Length =  $8 \times 400$ 

= 3200 m<sup>3</sup>

:. The volume of water that it holds is 3200 m<sup>3</sup>.



#### Solution 14.

Time taken to fill the tank

Volume of tank = 
$$800 \times 600 \times 4 \text{ cm}^3$$

Volume of water flown out of the pipe in 1 s

- = Area of cross section x Rate of flow
- $= 1.5 \times 10 \, (m/s)$
- $= 1.5 \times 10 \times 100 (cm/s)$
- = 1500 cm

:. The time taken to fill the tank = 
$$\frac{800 \times 600 \times 4}{1500}$$
$$= 1280 \text{ s}$$

:. The time taken to fill the tank is 1280 s.

# Solution 15.

$$= 6 \times 3600 \text{s} \times 30 \text{ cm}^3/\text{s}$$

$$= 648000 \text{ cm}^3$$

$$(:1 \text{ liter} = 1000 \text{ cm}^3)$$

:. The volume of water flown is 648 liters.

